If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-6k-1=0
a = 4; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·4·(-1)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{13}}{2*4}=\frac{6-2\sqrt{13}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{13}}{2*4}=\frac{6+2\sqrt{13}}{8} $
| 6x-4-5=7-2x | | 2x/3-7=12 | | 9x-19=-5 | | 13X^2-22x+99=0 | | (10-4x)x7=0 | | 60+x=72+0.75x | | .75x-x=12 | | 44=2(3x-5)1 | | x²-6x-54=0 | | Z-w=3 | | 65t+12=49t+36 | | 3×(7x-2)=4x+3 | | x+2(3x-4)=0 | | 4x-4=4x-9 | | 2x-10=3x-4 | | 3x(7x-2)=4x+3 | | 7x-25=2x-2 | | y+6,1=4y-4,5 | | 4x-1/2=-+7 | | 6+3x=13-x | | 4x+31=5x-1 | | 7x-3=x+16 | | x-2=-2x+6 | | 7x-3=x+14 | | 4x=4x-9 | | 6x=13-7x | | 3x=-2x+11 | | -x=-4x-9 | | 7n^2=-7n+84 | | 6=13x-11x | | 4=4x+2x | | -16t^2+143t+24=0 |